
Natural and Flexible Error
Recovery for Generated Parsers

Maartje de Jonge
Emma Nilsson-Nyman

Lennart Kats
Eelco Visser

Error Recovery

• Error Location

• Failure Location

Failure
location

Error
location

Error Recovery

• Traditional approaches
– Panic mode

Error Recovery

• Traditional approaches
– Panic mode

– Delete / insert tokens

}

Error Recovery

• Traditional approaches
– Panic mode

– Delete / insert tokens

– Recover productions

Error Recovery

• Traditional approaches
– Panic mode

– Delete / insert tokens

– Recover productions

• Issues
– Poor quality

– Language dependency

Error Recovery

• Requirements
– High quality

– Language independent

– SGLR

Fine-Grained Repair

• Error recovery for SGLR (OOPSLA 2009)
– Extend grammar with recover productions

• Insert special characters

• Delete special characters and words

– Derive recover rules from grammar

– Adapt parse algorithm to parse recover options

Fine-Grained Repair

• Recover productions
introduce ambiguities

• Ambiguities create a
search space of
alternate parses

• Problem: find the best
parse alternative

Figure: Alternate interpretations
of “ i = f (x + 1 ;”

Fine-Grained Repair

• Parallel Parsing
– Bad performance if applied

on large regions

• Backtracking
– Good performance in

regular cases

– Bad performance in worst-
case scenarios

Figure: Search space for recover
rule: insert ‘)’

Failure
location

Error
location

Figure: Backtracking over a large region

Figure: Parsing SQL as Java

Remove: ‘<’, Remove: password
Expected: ‘;’

Expected: ‘;’

Remove: ‘${’, Remove: ‘}‘, Expected: ‘;’

Remove: ‘|>’

Figure: Clever but unnatural recovery

Remove:‘/’

Problems with Fine-Grained Recovery
• Performance problems

– Large area of text is inspected

– Many recover actions are required

• Quality problems

– ‘Clever’ solutions

Solution in SLE Paper
• Technique for selecting erroneous region

– Restricts area of text that is inspected

– Fallback recovery: skip erroneous
region

Failure
location

Error
location

Figure: Backtracking on a small region improves
performance

Expected: ‘*/’

Figure: Fallback recovery solves problematic
errors

Fragment can not
be parsed

Figure: Restricting backtracking to erroneous
region avoids unnatural recoveries

Insert:‘);’

How to select the erroneous
region?

}

Bridge Parsing

Figure: Scope recovery by indentation

Idea

Figure: Region selection by indentation

Idea

Figure: Regions are independent blocks

Idea

Figure: Regions are independent blocks

Idea

• Issues
– Assumption on use of indentation

– Assumption on structure of language

Region Selection

• Select a candidate region

• Check if the candidate contains the error

• Repeat till the erroneous region is found

Region Selection

• Parser fails because of
unexpected token

• Select current region

• Reset parser to prior
position

• Skip the selected region
and resume parsing

• Parsing continues, so
the erroneous region is
detected

Region Selection

• Current

• Previous
– Child regions

• Siblings

• Parent

• Grand parent

• …

Parse
failure

Region Selection

Final Solution

• Select erroneous region

• Try Bridge Parsing

• Try Fine Grained Repair

• Skip region

Evaluation

• Testset
– Missing tokens (65 tests)

– Wrongly inserted tokens (8 tests)

– Others (3 tests)

Evaluation

• Criteria
– Excellent: Same as recovery by a human being

– Good: Reasonable recovery without spurious
errors

– Poor: Poor recovery creating spurious errors

Evaluation

• Contribution of
techniques
– Region -> Fine Grained

– Bridge Parsing -> Region ->
Fine Grained

– Region -> Bridge Parsing +
Fine Grained

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Poor

Good

Excellent

Evaluation

• Comparison with JDT
– JDT

– Region -> Bridge Parsing +
Fine-Grained

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Poor

Good

Excellent

Evaluation

• Language User
– Quality

– Performance

• Language Developer
– Language independent

– Flexible

– Transparent

Summary

• Region Selection
– Selects erroneous region by using indentation
– Used as a preprocessor for a correcting technique, or as fallback recovery
– Can be implemented for all parsing algorithms

• Bridge Parsing
– Scope recovery based on indentation
– Works for all parsing algorithms

• Fine-Grained Repair
– Inserting and deleting special tokens
– Extends grammar with recover productions
– Requires (S)GLR parsing

More Information

Permissive Grammars Project:
strategoxt.org/Stratego/PermissiveGrammars

Email & Homepage:
m.dejonge@tudelft.nl

swerl.tudelft.nl/bin/view/Main/MaartjeDeJonge

Braces

Figure: Same indentation
pattern, different regions

Figure: Different notations for
braces

Robustness

Dependent blocks

Recovery Rules

• Java recovery module

– Insertions

– Deletions

Generalized Parsing

