
The Aspectix Transformation Process Language
Detailed Transformation for Middleware-Based Software

Andreas I. Schmied
(andreas.schmied@uni-ulm.de)

Distributed Systems Lab, Ulm University, Germany



Agenda

• Requirements on Transformations

• System Architecture and Concepts

• Language Features by Example

• Prospectus: Composition Issues

2



Motivation

Distributed applications need support by middleware

• Generation: interface Þ proxy code, servant adapters, . . .

Ü Not sufficient for Aspectix programming model

• Example: Fault-tolerance by replication

Client/Server Model

3



Motivation

Distributed applications need support by middleware

• Generation: interface Þ proxy code, servant adapters, . . .

Ü Not sufficient for Aspectix programming model

• Example: Fault-tolerance by replication

Client/Server Model
Replicated Servants

3



Motivation

Distributed applications need support by middleware

• Generation: interface Þ proxy code, servant adapters, . . .
Ü Not sufficient for Aspectix programming model

• Example: Fault-tolerance by replication

Client/Server Model
Replicated Servants

Fragmented Object Model

3



Motivation

Distributed applications need support by middleware

• Generation: interface Þ proxy code, servant adapters, . . .
Ü Not sufficient for Aspectix programming model

• Example: Fault-tolerance by replication

Client/Server Model
Replicated Servants

Fragmented Object Model
Replicated Fragments

3



Requirements

Automatically derive feature/middleware-enabled applications

• Adapt unprepared applications
Ü Fine-grained manipulation of implementation sourcecode

• External metadata, annotated interface descriptions
Ü Several input sources of different languages

• Specialised application variants
Ü Multiple output targets

• AOP may help. . .
• Granularity too coarse-grained
• No statement/expression level access

4



Requirements

Automatically derive feature/middleware-enabled applications

• Adapt unprepared applications
Ü Fine-grained manipulation of implementation sourcecode

• External metadata, annotated interface descriptions
Ü Several input sources of different languages

• Specialised application variants
Ü Multiple output targets

• AOP may help. . .
• Granularity too coarse-grained
• No statement/expression level access

4



Requirements

Automatically derive feature/middleware-enabled applications

• Adapt unprepared applications
Ü Fine-grained manipulation of implementation sourcecode

• External metadata, annotated interface descriptions
Ü Several input sources of different languages

• Specialised application variants
Ü Multiple output targets

• AOP may help. . .
• Granularity too coarse-grained
• No statement/expression level access

4



Requirements

Multiple non-functional concerns at once

• Unforeseen, due to separate development teams
Ü Need over-all composite transformation

Objectives
• Comprehend semantics of composite transformations
• Controlled deviation from original application
• Find collisions and give rich diagnostic aid
• Solve collisions

Ü Own transformation language: Aspectix TPL

5



Requirements

Multiple non-functional concerns at once

• Unforeseen, due to separate development teams
Ü Need over-all composite transformation

Objectives
• Comprehend semantics of composite transformations
• Controlled deviation from original application
• Find collisions and give rich diagnostic aid
• Solve collisions

Ü Own transformation language: Aspectix TPL

5



Requirements

Multiple non-functional concerns at once

• Unforeseen, due to separate development teams
Ü Need over-all composite transformation

Objectives
• Comprehend semantics of composite transformations
• Controlled deviation from original application
• Find collisions and give rich diagnostic aid
• Solve collisions

Ü Own transformation language: Aspectix TPL

5



System Architecture

Input Models

Controlling TPL Scripts

Output ModelsMetamodels

Analysis Serialisation

• AST/MOF-based with few metamodel constraints
• Purely syntactic and semantic models
• Multi-stage, multi-model transformations

6



System Architecture

Main Concept: Transformation Process (TP)

• Self-contained, reusable transformation task
• No pattern-based mapping
• No high-level aspect language

Ü Basic transformation “assembly language”
• Primitive operators on model graphs
• List-based queries, expressions

7



System Architecture

Main Concept: Transformation Process (TP)

• Self-contained, reusable transformation task
• No pattern-based mapping
• No high-level aspect language

Ü Basic transformation “assembly language”
• Primitive operators on model graphs
• List-based queries, expressions

7



Example: Replication + Synchronization

Determinism of threads is crucial for replication
Ü Replace Java VM synchronization with own monitor logic
• Substitute synchronized modifier, wait, notify, . . .

Demonstration:

synchronized void m() {
sth();

}
Ü

void m() {
PV pv = getObjectMonitor();
try {

pv.lock();
sth();

}
finally {

pv.unlock();
}

}

(Listings shortened for clarity)

8



Example: Replication + Synchronization

Determinism of threads is crucial for replication
Ü Replace Java VM synchronization with own monitor logic
• Substitute synchronized modifier, wait, notify, . . .

Demonstration:

synchronized void m() {
sth();

}
Ü

void m() {
PV pv = getObjectMonitor();
try {

pv.lock();
sth();

}
finally {

pv.unlock();
}

}

(Listings shortened for clarity)

8



Example: Replication + Synchronization

1 (module adk.repl.sync.test
2

3 (model tree "java ./src−in ./src−out")
4

5 (process main
6

7 (parse ’BlockStatement "PV pv = getObjectMonitor();" )=INIT
8 (parse ’BlockStatement "pv.lock();" )=LOCK
9 (parse ’BlockStatement "pv.unlock();" )=UNLOCK

10

11 (‘org.aspectix‘.[Package].Classifier
12 .Block.Method[Modifiers.? |= ’synchronized_] )=SYMS
13

14 SYMS.(replaceSyncMethods INIT LOCK UNLOCK)
15 )
16

17 (process replaceSyncMethods ...) ; next slide
18 )

9



Example: Replication + Synchronization

1 (process replaceSyncMethods
2

3 (_1=INIT _2=LOCK _3=UNLOCK)
4

5 (parse ’Statement "try {} finally {}")=NewTRY
6

7 (NewTRY.Block.append LOCK _.Block.?)
8 (NewTRY.finally_.Block.append UNLOCK)
9

10 (Modifiers.remove ’synchronized_)
11 (Block.clear)
12 (Block.append INIT NewTRY)
13 )

10



Language Features
• Few elementary operators on graphs
• Model traversal with queries, predicates, dynamic typing
• Implicit iteration in context-bound paths
• Completely list-based expressions
• Labels and sophisticated referencing
• Multi-model access in varying metamodels

(model i:tree "idl ...")
(model m:mof "javaml ...")
(model n:jmod)

(:i ‘‘.[Module].Interface=I.(

(m:‘somewhere‘.remove m:’Classifier I.name+"_Stub" ...)
(new n:’Class I.name+"FragIfc" ...)

))

11



Prospectus: Composition Issues

• Objectives (briefly)
• Comprehend semantics of single TPs
• Yield sound composite TP, or
• Refuse with rich diagnostics

• Challenges
• Superfluous operations: create+delete
• Repeated or contradictory operations: double move
• Cyclic dependencies: “TPA < TPB < TPC < TPA”
• Unstable qualifiers: “At the beginning”
• Unstable quantifiers: “For all types”

12



Prospectus: Composition Issues

• Objectives (briefly)
• Comprehend semantics of single TPs
• Yield sound composite TP, or
• Refuse with rich diagnostics

• Challenges
• Superfluous operations: create+delete
• Repeated or contradictory operations: double move
• Cyclic dependencies: “TPA < TPB < TPC < TPA”
• Unstable qualifiers: “At the beginning”
• Unstable quantifiers: “For all types”

12



Prospectus: Approach

• Reason about operator graph
• Basic semantics of operators known
• Metamodels introduce semantics on operator × target

Modifiers.remove 6= Methods.remove

• Calculate effective range of operators
• Overlapping targets may yield collisions

Models

Processes

13



Prospectus: Approach

• Break strict serialisation of TP parts

• Annotations relate parts for composition
• Consolidate TP parts
• Enumerate alternative serialisations

Ü TPs must be prepared for composition

−ADE E

C

D

B+A

14



Prospectus: Approach

• Break strict serialisation of TP parts
• Annotations relate parts for composition

• Consolidate TP parts
• Enumerate alternative serialisations

Ü TPs must be prepared for composition

−A

DE

EC

D

B+A

14



Prospectus: Approach

• Break strict serialisation of TP parts
• Annotations relate parts for composition
• Consolidate TP parts

• Enumerate alternative serialisations

Ü TPs must be prepared for composition

−A

DE

D

B+A

EC

−A
+A

D

D

E

14



Prospectus: Approach

• Break strict serialisation of TP parts
• Annotations relate parts for composition
• Consolidate TP parts

• Enumerate alternative serialisations

Ü TPs must be prepared for composition

DE

EC

B

14



Prospectus: Approach

• Break strict serialisation of TP parts
• Annotations relate parts for composition
• Consolidate TP parts
• Enumerate alternative serialisations

Ü TPs must be prepared for composition

BEC D B EC D

2 alternative serialisations

14



Conclusion

• Middleware-features for unprepared applications
Ü Multi-model/-concern transformations

• Lowlevel transformation language TPL
Ü Prototype in Java for ANTLR/JMI-based models

• Ideas how to cope with composition issues
Ü Some early experiments successful

Thank you for listening!
(andreas.schmied@uni-ulm.de)

15


	Motivation
	Concepts
	Example
	Features
	Prospectus
	Conclusion

