Improving the Reuse
of
Language Infrastructures

Karl Trygve Kalleberg
University of Bergen

UNIVERSITETET I BERGEN




Motivation

» People build language infrastructures all the time

— compilers, language-specific transformation systems,
code analyzers and generators

» Reusing these is surprisingly difficult
— very few compilers/analyzers are open and extensible
— limited plug-in capabilities
« Consequences
— language processing is difficult for most developers
— light-weight, text-based scripts are preferred
— new infrastructures mostly built from scratch
— these systems are frequently brittle and incomplete
— programmable transformation systems seldom used



Language Infrastructure

backends
M frontend
- current clients I B compiler
editor doc
generator
NS ) x86 x86 code JEE%E
optimizers i generator JERCE
type style ppc ppc code ppC
parser e
analyzer checker optimizers @ generator g




Language Infrastructure

] backends
transformation B frontend
- current clients system Bl compiler
editor doc
generator
- ) x86 x86 code [JIBGH
optimizers i generator JERCE

type style
analyzer checker

parser

ppc ppc code ppc
optimizers @ generator LSS

grammar typing logic style logic analysis logic machine format
typing rules style rules IRs (SSA, CFG, ..)

reuse



Us and Them and The Other Guys

* Us = the software transformation community
— rewriting of source code and other software artifacts
— language infrastructure is a means to an end
— obvious reusers of mainstream language infrastructure
— some degree of community interoperability and reuse
 Them = language providers
— providers (and maintainers!) of language infrastructure
— mostly closed solutions; no extensibility
— design goals do not include code rewriting
* The Other Guys = library/framework developers

— potential users of programmable transformation
systems



Why is Reuse so Poor?

* Technical barriers
— not designed for reuse (no documentation, no libraries)
— no de facto standards for interoperability
— poorly compatible implementation languages
— (incompatible licenses)
« Sociological barriers
— lack of awareness
— no project support infrastructure (issue tracker, forums)
— misconception that “parsing is enough”
— “not invented here’-syndrome



Some Suggestions

e Technical
— data integration
« serialize ASTs (UPTR)
 experiment with more general interchange formats
— functional integration
* co-develop sensible compiler rewriting APIs
« Sociological
— promote existing language infrastructures
« place prominently on pt.org
— combat “not invented here syndome” — collaborate!
— point to, and document, success stories
— promote Kkiller feature: adaptable domain-support



Conclusion

Current status: “Have solution, need problem”

— at least, “have product, want clients”

Promotion and advocacy is necessary

— examples, documentation, hyperiding
Open-sourcing improves code reuse

— potentially high maintenance cost

Complete openness not required

— exposing a stable AST interface is already useful
Tendency towards opening mainstream compilers

— ECJ DOM, JSR 269 (APT), JSR 199 (compiler API)






