Components Weaving for Software Product Features

Atef Bader

abader@lucent.com
Lucent Technologies

Naperville, IL 60655

Husein Armouti

armouti@it3inc.com

Aurora, IL 60616

Shangping Ren

Tzilla Elrad

{shangping,elrad}@iit.edu
Computer Science Dept.

Illinois Institute of Technology

Chicago, IL 606165

Abstract

The continuous stream of mix-and-match for software features into the core software product often results in design fatigue and eventually produces a rampant of redundant class hierarchies that are difficult to integrate and maintain. In this position paper we argue that the fixed set of variation points in the software product is often the root cause of this problem.  Feature reuse requires a variability mechanism in order to configure the variation points of its core components. Component generator is one of the variability mechanisms that are often used to generate source code from specifications. In this paper we present an aspect-oriented approach that allows the system engineer to generate components based on XML specifications and bundle features into the software products, where the feature or components can be used as-is or (re)configured as needed.  We use the XML to specify the weaving rules and statically or dynamically bundle these features and components into the core software products. XML-based AOP approaches are more adequate for engineering the artificial variation points that can be specified on demand.

1. Overview
The software product line is a set of related products that share common architecture in order to maximize reuse, shorten time to market, and improve quality [1].  One of the key design issues in such an architecture, Figure1, is the ability to express the variability between the various software products such that software reuse, whether the reuse unit is a feature or a component, can happen more frequent across the products’ boundaries. Software reuse comes in two forms: code and design. Code reuse is achieved through inheritance and composition, and design reuse is often achieved through the use of software design patterns [8]. Software products extend their functionalities through the optional inclusion or exclusion of software features [2]. The inheritance mechanism allows the software product line hierarchy to grow vertically which makes it difficult to control the size of this hierarchy especially if there are a number of features that can be included or excluded into the software product based on the customer requests.   The software product line architecture specifies the variation points expected in the components. Components [1,2,3] are rarely added to the software products as individual units, but rather as a group that composes the software feature. The software feature, a functionality slice, represents a logical unit of functionality that is specified by a set of requirements. Software features are the unit of the incremental evolution for the software product line. Even though the perception that we often tend to formulate about software features is that they are unit of black-box unit reuse, generally, the components implementing these features end up with a numerable modifications in order to fit the context of the reuse; though the authors in [3] have distinguished between generative programming and generic programming based on the abstract feature or concrete component specifications In our position paper, software features are functionality slices that can be added to the base class hierarchies either statically or dynamically. Current object-oriented technologies depend on inheritance, composition, and parameterized types (mixins) mechanisms which do not scale well when there are a large number of optional features that need to be customized and incorporated into the core class hierarchy of the software product. Feature customizations are carried out by means of components’ changes. Though the primary design goal of these components is to be independently designed and developed in order to maximize their potential for (re)use. Feature customization and integration are primarily a function of the component customization and integration. What is needed is a new mechanism that will allow the customization and integration of software components. There are two requirements that need to be met by such mechanism(s). First, the mechanism shall allow on-demand addition of functionalities to components without changing their initial types. Secondly, the mechanism shall allow the creation of new components from the merge of existing components. Software change requests may result in modifying a number of classes.  And if the number of classes affected is small, we can use either inheritance or mixins [10, 11, 12, 13] in order to add changes to the core class hierarchy. However, if the implementation of a software change request results in a scattered implementation across the class hierarchy, such implementation will be difficult to integrate and expensive to maintain without the use aspect-oriented techniques [5,6,7,9,14,15]. Adding a functionality slice, a feature, to the software product statically shall be possible without the unnecessary and invasive rework on base classes and without the need to shutdown the running system for reconfiguration.  


[image: image1]
2. Component Generator as a Variability Mechanism

Reuse of components in the software products requires the ability to (re)configure components or the ability to add functionality at the variation points of the components.  Parameterized types in generative programming [3] have been used effectively in generating the reconfigurable software components. Generally, the component generator approach relies on specification languages in order to produce the components at the source code level. The variation points of the components allow the user to produce several variants of the component behavior. A major difficulty in this approach is that the user has to engineer the variation points before deployment. This approach may not work always since it is often the case that the system engineer can’t anticipate all variation points early in the design process. Hence, reengineering and rework of these components are common in the software industry. Our approach to tackle this difficulty is to seek alternative mechanisms that would allow the engineer to create these variation points on-demands. Current software engineering practices for software products tend to focus on software design that meets current requirements, and then revise the design to engineer proper variation points in order to accommodate future requirements. This approach may work for  few releases of the software products but afterwards the software products will suffer from design fatigue  where software product design become a giant class hierarchy that is difficult to change and expensive to maintain. The essence of the design fatigue problem stems from the fact that we use common software development techniques that can meet change request in the short term but fails to accommodate the continuous stream of changes in the long term.  

To better cope with change request in software products we use the weaving mechanism in aspect-oriented technology in order to introduce new functionalities into an existing component or merging existing components in order to produce new components. The difficulty in fixed variation points has motivated us to seek alternatives beyond object-oriented techniques in order weave components with little or no knowledge about the predetermined set of variation points. In the feature driven development, functionality slices are added to software products in different releases. However, different customers may request different combinations of software features. It is not practical to keep redundant development nodes in order to produce different variants of the software product. Rather, it is more acceptable to keep one copy of the official software product release and then incorporate the add-on features based on the customer requests. By doing so, the core functionality of the software product can be easily maintained across the software releases, and the different features can be maintained in isolation.  Our position is based on two weaving mechanisms in order to accommodate change requests into the software product. The first is the join mechanism as it has been defined in AspectJ and the second is the merge mechanism as it has been defined in HyperJ. 
One may argue that mixin based approaches [10,11,12,13] are best suited for feature-driven development,  however,  Mixin approaches have one phase, growing phase, by which mixin can be passed to another mixin, and if there is a need to remove certain mixin from  the mixin  hierarchy at run time, current approaches fall short of meeting such requirement. 

In our approach the software product can be extended or contracted based on the mix and match of class hierarchies. Parameterized types are possible through the use of mixins and a combination of mixins as well, but once the mixin class hierarchy is constructed, a mixin can not be removed or contracted. 

Our position paper presents a solution by which the developer states what components are needed to be produced or weaved and at which variation points in an XML schema and the generation tool [16] will use the join and merge rules for the perspective components either statically or dynamically in the generation process. The merge in our approach has similar semantics to mixins, where merge instantiations may generate new components. However, the join does not change the components’ interfaces and hence allows the components to preserve their initial identities. 

References

1. Bosch, J “Prodcut-Line Architectures in Industry: A Case Study,”Proceedings of ICSE 1999, pp. 544-554

2. D. Batory and S. O’Malley. The Design and Implementation of Hierarchical Software Systems with Reusable Components. In ACM Transactions on Software Engineering and Methodology, vol. 1, no. 4, October 1992, pp. 355-398

3. Czarnecki, , K., Eisenecker, U. W. „Components and Generative Programming”, ACM SIGSOFT 1999.

4. Elrad, T., Filman, R.E. and Bader, A. “Aspect-oriented Programming”. Communications of the ACM, 44 (10), October 2001, pp.29-32

5. Bergmans, L. and Aksit, M. “Composing Crosscutting Concerns Using Composition Filters”. Communications of the ACM, 44 (10), October 2001, pp.51-57.
6. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J. and Griswold, W.G. “Getting Started with AspectJ”. Communications of the ACM, 44 (10), October 2001, pp.59-65.

7. Lieberherr, K.J. Adaptive Object-Oriented Software: The Demeter Method with Propagation Patterns. PWS Publishing Company, Boston, 1996.

8. Gamma, E., Helm, R., Johnson, R. and Vlissides, J.(1995). Design Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA.

9. Kiczales, G., Lamping J., Mendhekar, A., Maeda,C, Lopes C., Loingtier,J-M, and Irwin J.(1997).  Aspect-Oriented Programming. In Proceedings  of ECOOP ’97. LNCS 1241. Springer-Verlag, pp. 220-242. 

10. Gilad Bracha and William Cook. Mixin-based inheritance. In Norman Meyrowitz, editor, Proceedings of the Conference on Object-Oriented Programming: Systems, Languages, and Applications/Proceedings of the European Conference on Object-Oriented Programming, pages 303-311, Ottawa, Canada, October 1990. 

11. Davide Ancona and Elena Zucca. A theory of mixin modules: Basic and derived operators. Mathematical Structures in Computer Science, 8(4):401-446, 1998.

12. Davide Ancona, Giovanni Lagorio, and Elena Zucca. Jam - a smooth extension of java with mixins. In ECOOP, pages 154-178, 2000.

13. Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. Classes and mixins. In Conference Record of POPL 98: The 25TH ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, San Diego, California, pages 171-183, New York, NY, 1998

14. H. Ossher and P. Tart. Hyper/J: multi-dimensional separation of concerns for Java. In Proc. of ICSE, pages 734-737, June 2000.
15. R. Pawlak, L. Seinturier, L. Duchien, and G. Florin, “JAC: A Flexible Solution for Aspect-Oriented Programming in Java”. In A. Yonezawa and S. Matsuoka, editors, Reflection 2001 Proceedings, volume 2192 of LNCS, pages 1-24. Springer, 2001.
16. A. Bader, S. Ren, and H. Armouti. “Delta Changes for OO Software Adaptation: Pervasive or Invasive,” Hawaii International Conference on System Sciences 2005 (To Appear)











































Variations





Variations















Figure1: Software Product Line Structure



Features



Components



Product





Product Line































































