
Forsaking Inheritance:
Supercharged Delegation

in DelphJ

Yannis Smaragdakis
University of Athens

joint work with Prodromos Gerakios
and Aggelos Biboudis,

building on work by Shan Shan Huang

Research sponsors:

Inheritance: A Love-Hate Affair
(we love to hate it)

 Confusing
 subtyping vs. subclassing

 Coarse-grained
 inherit all-or-nothing

 Bad for reuse
 a reuse mechanism that plays badly

when one wants to reuse from more than
one place!

 Rigid
 fixed at subclass development time

Yannis Smaragdakis
University of Athens

2

Alternative: Delegation

 class Refinement {
 Base b;
 void foo() {… b.foo(); … }
}

 Completely manual
 need to forward explicitly

Yannis Smaragdakis
University of Athens

3

Our Past Work: Morphing

 Can make delegation more automatic
 consultation or forwarding

 class Logger {
 Subj ref;
 …
 <R,A>[m] for (R m(A): Subj.methods)
 R m (A a) {
 log(m.name, a);
 return ref.m(a);
 }
}

Yannis Smaragdakis
University of Athens

4

More Morphing

 Can do a lot more

 class Listify {
 Subj ref;
 …
 <R,A>[m] for (R m(A): Subj.methods)
 R m (List<A> a) {
 … // call m for all list elements
 }
}

Yannis Smaragdakis
University of Athens

5

Morphing Still No Substitute
For Inheritance

 No late binding
 cannot change reused functionality

 class C {
 Subj ref; // Subj defines and calls foo
 …
 <R,A>[m] for (R m(A): Subj.methods)
 R m (A a) { …
 return ref.m(a);
 }
 void foo() {…}
}

Yannis Smaragdakis
University of Athens

6X

Mechanisms Combining
Delegation and Late Binding

 There are past mechanisms combining
delegation and late binding
 Kniesel’s work, Ostermann’s, others

 But this makes delegation be more like
inheritance
 automatically forward all methods, not the ones

chosen

 Need to combine with morphing
 we next see our current design

Yannis Smaragdakis
University of Athens

7

New Construct: subobject

 Per-field late binding designations
 obvious question: is field mutable?

 class Logger {
 subobject Subj ref;
 …
 <R,A>[m] for (R m(A): Subj.methods)
 R m (A a) {
 log(m.name, a);
 return ref.m(a);
 }
}

Yannis Smaragdakis
University of Athens

88

The Good Part

 Works fine for our original problems
 e.g., multiple subobjects

 class GradStudent {
 subobject Student sref;
 subobject Employee eref;
 …
 <R,A>[m]
 for (R m(A): Student.methods;
 no R m(A): Employee.methods)
 R m (A a) { … }
 … // handle other two cases
}

Yannis Smaragdakis
University of Athens

9

Subtlety: Accidental Overriding
(avoided)

 interface I { void meth(); }
class Unsuspecting implements I {…}

class C {
 subobject I ref;
 C(I i) { ref = i; }
 …
 void foo() {…}
}
C c = new C(new Unsuspecting());

 If Unsuspecting defines a foo, should c
override it with C’s version?

Yannis Smaragdakis
University of Athens

10

Subtlety: Accidental Overriding
(avoided)

 interface I { void meth(); }
class Unsuspecting implements I {…}

class C {
 subobject I ref;
 C(I i) { ref = i; }
 …
 void foo() {…}
}
C c = new C(new Unsuspecting());

 Our policy: can override only non-final methods
that are declared in static type of subobject field

Yannis Smaragdakis
University of Athens

11

Subtlety: Per-Field Late
Binding?

 Inheritance has it easy: the superclass
subobject is both owned and immutable
 we explored a fully liberal design
 subobjects can be aliased by multiple wrapper

objects
 subobject fields are mutable

 Severe consequences for execution (and
semantics)
 alternative past designs had the object itself keep

a notion of “self”, different from “this”
Yannis Smaragdakis
University of Athens

12

Aliasing

Yannis Smaragdakis
University of Athens

1313

???

Access Paths

 Wrapping of subobject captured in references!
 references in our design are heavy-duty

 class Wrapper {
 subobject Subj ref; …
}
Subj subj = new Subj(); // object s1
Wrapper w1 = new Wrapper(subj); // object o1
Wrapper w2 = new Wrapper(subj); // object o2
Subj alias = w2.ref;

 subj and alias not same!
 alias == o2->refs1

Yannis Smaragdakis
University of Athens

14

When Do These Change?

 Access paths are copied on every reference
assignment, built up on field write

 Subj subj1 = new Subj(); // object s1
Subj subj2 = new Subj(); // object s2
Wrapper w1 = new Wrapper(subj1); // object o1
Wrapper w2 = new Wrapper(subj2); // object o2
Subj aliasForS2 = w2.ref;
w1.ref = aliasForS2;

 One way to view: only keep last object of assigned
ref’s access path, append to lhs of assignment
 w1.ref == aliasForS2 == o2->refs2

Yannis Smaragdakis
University of Athens

15

Another Way to View

 Every stack reference represents a full access
path but heap references do not

 Subj subj1 = new Subj(); // object s1
Subj subj2 = new Subj(); // object s2
Wrapper w1 = new Wrapper(subj1); // object o1
Wrapper w2 = new Wrapper(subj2); // object o2
Subj aliasForS2 = w2.ref;
w1.ref = aliasForS2;

 Access paths built up on field read
 w1.ref == w2.ref == s2

 aliasForS2 == o2->refs2

Yannis Smaragdakis
University of Athens

16

Also Prevents Surprises with
Mutable References

Yannis Smaragdakis
University of Athens

1717

 Since we have per-reference access path:
this does not change by mere
reassignment of wrapper fields

To Summarize

 Morphing can emulate inheritance and
address its shortcomings
 automation but with control

 no all-or-nothing reuse
 no conflicts when reusing from multiple sources
 real reuse: single pattern for many methods

 all with modular type safety
 everything works with generic/unknown field types

Yannis Smaragdakis
University of Athens

18

Caveats

 But need deep delegation
 Subtle, complex consequences of per-field

late binding
 aliasing of subobjects seems inevitable
 mutability of subobject references a design choice

 Is this a reasonable programming model?
 Can it be implemented efficiently?

 a reference becomes an entire data structure!

Yannis Smaragdakis
University of Athens

19

