Shared Memory Concurrency

Khilan Gudka

Susan Eisenbach

Where we are: we use locks

* But there are problems with them
— Not composable
— Introduce deadlock
— Break modularity
— Priority inversion
— Convoying
— Starvation

A better solution: atomic sections

* What programmers probably can do is tell
which parts of their program should not
involve interferences

* Atomic sections [Lomet77]

— Declarative concurrency control
— Move responsibility for figuring out what to do to
the compiler/runtime

atomic {
... access shared state ...

}

A better solution: atomic sections

* Simple semantics (no interference allowed)
* Naive implementation: one global lock
* But we want to allow parallelism without:

— Interference
— Deadlock

02/03/2012

Implementing Atomic Sections:
transactional memory

* Much interest [ror review of work up until 2010, see Harris10]
* Advantages

— No problems associated with locks

— More concurrency
* Disadvantages

— Irreversible operations (10, System calls)

— Runtime overhead

Implementing Atomic Sections:
lock inference
* Statically infer the locks that are needed to
protect shared accesses

* Insert lock()/unlock() statements for them into
the program to ensure atomic execution

atomic { compiled to synchronized(x) {
xf=1; xf=1;

} }

Implementing Atomic Sections:
lock inference

* Challenges
— Maximise concurrency
— Minimise locking overhead
— Avoid deadlock

Caveat: locking must be two-phased
for atomicity

* Cannot acquire a lock once a release occurs

Correct Wrong

02/03/2012

What about deadlock?

* Lock inference inserts locks automatically, so
it must ensure that deadlock doesn’t happen

* Static analysis is too conservative.
* Deadlock happens very infrequently

* All locks are taken at the start of the atomic,
so can just rollback the locks if deadlock
occurs and try again!

Importance of locking granularity

* To maximise parallelism, locks should be as
fine-grained as possible

* The granularity of locks depends on the
compile-time representation of objects

* Paths (e.g. x.f) allow per-instance locks when
each object has it’s own lock (e.g. Java)

* We developed an analysis to infer paths

Inferring fine-grained locks

* Infer sets of paths at each program point

{y}

atomic { synchronized(y){
X =Y; X =Y;
x.f = 10; x.f = 10;

} X}y

{

Problem of infinite sets of locks

{n, n.next, n.next.next, ... }

* But this set may not always be finite!

{h,In.next,}... }

atomic {
n = n.next;
{ n,In.next, Jn.next.next }

Sets can grow -
infinitely large! {h,In.nekt }

R

02/03/2012

Automata

* Can represent a possibly infinite set of paths
* A compact compile-time representation
* Our analysis flows automata around the CFG

DRI O
R IO O

o 0

Scaling to Java: “Hello World!”

atomic {

}

System.out.println(“Hello World!”);

Callgraph for “Hello World!”

Scaling by computing summaries

Our previous analysis didn’t scale

We therefore switched to computing
summaries

A summary is a function that describes how a
method as a whole translates dataflow
information

Summaries scale better — they can be
computed once for a method and re-used

Uses Sagiv’s interprocedural dataflow analysis

02/03/2012

Scaling by computing summaries

fal{) ={a}
void m(Obj p) {
p.f = 1;
}

f., is m’s summary function

Benchmarks
e e o e)
methods methods
sync 8 2 0 0 1177
pcmab 50 2 2 15 457
bank 8 8 6 7 269
traffic 2 24 4 63 2128
mtrt 2 6 67 1324 11312
hsqgldb 20 240 2107 2955 301971

Analysis times

* Experimental machine:
8-core i7 3.4Ghz, 8GB RAM, Ubuntu 11.04

* Java options:
Min & Max heap: 4GB, Stack: 128MB, 8 threads

[Name ______lPaths _____Jlocks ____JTotal _|

sync 0.05s 0.01s 2m10s
pcmab 0.15s 0.02s 2m10s
bank 0.15s 0.02s 2m1lls
traffic 0.37s 0.06s 2m13s
mtrt 33.9s 1.89s 2m54s
hsqgldb ? ? ?

Simple analysis not enough

* Our analysis still wasn’t efficient enough to analyse
hsqgldb.
* We performed further optimisations to reduce space-
time requirements:
— Delta propagation
* Only propagate new dataflow information
* Reduces the amount of redundant work
— Compressing CFGs

* Merging CFG nodes to reduce the amount of storage space and
propagation carried out

— Primitives for state
Encode analysis state as sets of longs for efficiency
— Parallel propagation

02/03/2012

Analysis times

* Experimental machine for hsqldb:

80-core Xeon E7-8870 2.4Ghz, 1TB RAM, Ubuntu 10.04

* Java options:

Min & Max heap: 70GB, Stack: 128MB, 8 threads

[Name ______lpaths ______llocks _____JTotal __|

sync 0.05s
pcmab 0.15s
bank 0.15s
traffic 0.37s
mtrt 33.9s
hsqldb 14h 47m

0.01s
0.02s
0.02s
0.06s
1.89s
38m

2m 10s
2m 10s
2m 11s
2m 13s
2m 54s
15h 40m

Runtime Performance

Benchmark ___[Manual ___Jus ______

sync 47.5s
pcmab 1.9s
bank 2.8s
traffic 1.9s
mtrt 0.7s
hsqgldb 3.1s

56.1s
45.5s
10.3s
15.4s
0.8s
400s

Improving runtime performance

* We remove locks to improve the performance of

the resulting programs:

— Single-threaded execution

— Thread-local
— Instance-local
— Class-local

— Method-local
— Dominated

— Read-only

— Implicit locks

Single-threaded execution

* Do not acquire any locks unless multiple
threads are executing.

* All optimisations that follow will assume that

this one is enabled

02/03/2012

Removing locks: Thread-local

* Remove locks on objects that are not shared
and thus do not need to be locked

Benchmark _| Manual _| Before _|After __|

sync 47.5s 56.1s 59.9s
pcmab 1.9s 45.5s 3.9s
bank 2.8s 10.3s 10.6s
traffic 1.9s 15.4s 13s
mtrt 0.7s 0.8s 0.76s

Removing locks: Instance-local

* Look for implementation-only objects (e.g.
Node instances in LinkedList) that do not
escape their enclosing object

* Protect them by locking the owning instance
(e.g. LinkedList)

Benchmark _| Manual _Before __|After _|

sync 47.5s 56.1s 53.8s
pcmab 1.9s 45.5s 2.4s
bank 2.8s 10.3s 9.4s
traffic 1.9s 15.4s 11.7s
mtrt 0.7s 0.8s 0.8s

Removing locks: Class-local

¢ Similar as instance-local but for static
variables

* Class-local objects are not accessed from
classes except the creating one

Benchmark _| Manual _|Before __JAfter _

sync 47.5s 56.1s 61.3s
pcmab 1.9s 45.5s 4.3s
bank 2.8s 10.3s 10.4s
traffic 1.9s 15.4s 13.9s
mtrt 0.7s 0.8s 0.8s

Removing locks: Method-local

* Identify objects that do not escape the method they
are created in and thus also do not need to be locked

* Purpose is to find at the start of an atomic section,
which local variables point to new objects that have
not escaped the current method

* These objects don’t need to be locked

Benchmark _| Manual _Before __|After _|

sync 47.5s 56.1s 55.8s
pcmab 1.9s 45.5s 4.3s
bank 2.8s 10.3s 11.1s
traffic 1.9s 15.4s 13.4s
mtrt 0.7s 0.8s 0.8s

02/03/2012

Removing locks: Dominated

* If alock A is always acquired when lock B is,
then it is sufficient to only lock A and not B.

* We say that lock A dominates lock B

Benchmark _| Manual _| Before _|After _|

sync
pcmab
bank
traffic
mtrt

47.5s
1.9s
2.8s
1.9
0.7s

56.1s
45.5s
10.3s
15.4s
0.8s

55.1s
3.8s
9.3s
14.2s
0.8s

Removing locks: Read-only

* If an object is only locked in read mode, then

we don’t need to acquire it at all

* Itis never acquired in a conflicting mode so
locking it is superfluous

[Benchmark [Manual ___Jus__|

sync
pcmab
bank
traffic

mtrt

47.5s
1.9s
2.8s
1.9s
0.7s

56.3s
4s
9.5s
10s
0.8s

Removing locks: Implicit-locks

* Don’t need to acquire the type lock in
intention mode if the type itself is never

locked!

Benchmark _| Manual _Before __|After _|

sync
pcmab
bank
traffic
mtrt

47.5s
1.9s
2.8s
1.9s
0.7s

56.1s
45.5s
10.3s
15.4s
0.8s

54.5s
3.9s
7.6s
9.5s
0.8s

Removing locks: All optimisations

Benchmark _| Manual _| Before __|After _|

sync 47.5s
pcmab 1.9s
bank 2.8s
traffic 1.9s
mtrt 0.7s
hsqldb 3.1s

54.5s
2.2s
5.3s
4s
0.8s
15s

02/03/2012

02/03/2012

Conclusion

* What kind of evaluation do we need to do to
see whether

— The hypothesis that atomicity is a better model
than explicitly locking is validated or rejected

— The analysis is fast enough
— The code is fast enough

