
!1

!2

KOMPUTILAJ
L I N G V O J
E S T A S
H O M A J
L I N G V O L

!3

COMPUTER
LANGAUGES
ARE HUMAN
LANGAUGES

!4

l a n g u a g e
p r e c e d e s
d e s i g n

!5

The tools we use have

a profound (and
devious!) influence on
our thinking habits,
and, therefore, on our
thinking abilities
https://www.cs.virginia.edu/~evans/cs655/readings/ewd498.html

APLAS
2018

!6

3-7 DEC
2018

!7

12 June
15 June

!8

SPECIFICATION

IMPLEMENTATION
!9

IMPLEMENTATION

SPECIFICATION
!10

s
s

!11

!12©Albert Bridge CC-BY-SA 2.0

!13

!14

!15

ASH
NAZG
By Jorge Arimany [CC BY-SA 3.0], from Wikimedia Commons

8. Manifest
The parents in inherit <parent> and use <parent>
clauses must be manifest. This means that Grace must be
able to determine the shape of the object that is being
inherited on a module-by-module basis. In particular,

	 1	 the meaning of the parent expressions must not be
subject to overriding, and

	 2	 the result of the parent expression must be a fresh
object whose shape is statically determinable.

types? annotations? arguments? …

 16

8. Manifest
method mixin(parent) {
 object {
 inherit parent

 method foo { … }
 def x = 42

 }
}

 17

8. Manifest

 class internalSendNode {
 inherit sendNode

 method foo { … }
 def x = 42

 }

 18

8. Manifest
class erikAndGiladsOwnAST {
 inherit theOneTrueAST
 class internalSendNode {
 inherit sendNode

 method foo { … }
 def x = 42

 }
}

 19

8. Not Manifest

def x = match (randomInt(3))
 case { 1 -> “Hello” }
 case { 2 -> 11 }

 case { _ -> jsonStream.next }

 20

 21

SPLASH
1 August

class a {
 method c is confidential {
 print "c"
 }
 method run {
 c // implicit receiver request
 self.c // self request
 def x = self
 x.c // explicit receiver request
 }
}

 22

def myouter = object {
 method run is confidential {
 print “outer run"
 }
 def myinner = object {
 run

 outer.run
 method run { print “inner run” }

 }
} 23

def myouter = object {
 method run is confidential {
 print “outer run"
 }
 def myinner = object {
 run

 myouter.run
 method run { print “inner run” }

 }
} 24

 object {
 def myouter = self
 method run is confidential {
 print “outer run"
 }
 def myinner = object {
 run

 myouter.run
 method run { print “inner run” }

 }
} 25

!26

